Euclidean Geometry Cheat Sheet

Struggling to remember the exact wording for geometry proofs? This tool is designed to help HKDSE Mathematics students instantly find and review geometry reasons covered in the syllabus.

Lines

12

adj. $\angle$s on st. line

adj. $\angle$s on st. line
If
If AOB is a straight line,
Then
$x+y=180^{\circ}$

adj. $\angle$s supp.

adj. $\angle$s supp.
If
If $x+y=180^{\circ}$
Then
AOB is a straight line.

$\angle$s at a pt.

$\angle$s at a pt.
$w+x+y+z=360^{\circ}$

vert. opp. $\angle$s

vert. opp. $\angle$s
If
If lines AB and CD meet at O,
Then
$x = y$

corr. $\angle$s, AB$\parallel$CD

corr. $\angle$s, AB$\parallel$CD
If
If $AB \parallel CD$,
Then
$x = y$

alt. $\angle$s, AB$\parallel$CD

alt. $\angle$s, AB$\parallel$CD
If
If $AB \parallel CD$,
Then
$x = y$

int. $\angle$s, AB$\parallel$CD

int. $\angle$s, AB$\parallel$CD
If
If $AB \parallel CD$,
Then
$x+y=180^{\circ}$

corr. $\angle$s equal

corr. $\angle$s equal
If
If $x = y$,
Then
$AB \parallel CD$

alt. $\angle$s equal

alt. $\angle$s equal
If
If $x = y$,
Then
$AB \parallel CD$

int. $\angle$s supp.

int. $\angle$s supp.
If
If $x+y=180^{\circ}$
Then
$AB \parallel CD$

mid-pt. theorem

mid-pt. theorem
If
If $AD=DB$ and $AE=EC$ (D,E midpoints of AB, AC),
Then
$DE \parallel BC$
$BC = 2DE$

intercept theorem

intercept theorem
If
If $AD \parallel BE \parallel CF$ and $AB = BC$,
Then
$DE = EF$

Triangles

22

$\angle$ sum of $\triangle$

$\angle$ sum of $\triangle$
$x+y+z=180^{\circ}$

ext. $\angle$ of $\triangle$

ext. $\angle$ of $\triangle$
$x+y=z$

SAS

SAS
If
If $AB=PQ$, $\angle ABC=\angle PQR$, $BC=QR$,
Then
$\triangle ABC \cong \triangle PQR$

SSS

SSS
If
If $AB=PQ$, $BC=QR$, $AC=PR$,
Then
$\triangle ABC \cong \triangle PQR$

ASA

ASA
If
If $\angle ABC=\angle PQR$, $BC=QR$, $\angle ACB=\angle PRQ$,
Then
$\triangle ABC \cong \triangle PQR$

AAS

AAS
If
If $\angle ABC=\angle PQR$, $\angle ACB=\angle PRQ$, $AB=PQ$,
Then
$\triangle ABC \cong \triangle PQR$

RHS

RHS
If
If $\angle ABC=\angle PQR=90^{\circ}$, $AC=PR$ (hypotenuse), $BC=QR$ (side),
Then
$\triangle ABC \cong \triangle PQR$

AAA

AAA
If
If $a=p$, $b=q$, $c=r$,
Then
$\triangle ABC \cong \triangle PQR$

AA

AA
If
If $b=q$, $c=r$,
Then
$\triangle ABC \sim \triangle PQR$

3 sides proportional

3 sides proportional
If
If $\frac{AB}{PQ}= \frac{BC}{QR}= \frac{AC}{PR}$,
Then
$\triangle ABC \sim \triangle PQR$

ratio of 2 sides, inc. $\angle$

ratio of 2 sides, inc. $\angle$
If
If $b=q$ and $\frac{AB}{PQ}= \frac{BC}{QR}$,
Then
$\triangle ABC \sim \triangle PQR$

corr. $\angle$s, $\cong$ $\triangle$s

corr. $\angle$s, $\cong$ $\triangle$s
If
If $\triangle ABC \cong \triangle PQR$,
Then
$\angle ABC=\angle PQR$
$\angle BCA=\angle QRP$
$\angle ACB=\angle PRQ$

corr. sides, $\cong$ $\triangle$s

corr. sides, $\cong$ $\triangle$s
If
If $\triangle ABC \cong \triangle PQR$,
Then
$AB=PQ$
$BC=QR$
$AC=PR$

corr. $\angle$s, $\sim$ $\triangle$s

corr. $\angle$s, $\sim$ $\triangle$s
If
If $\triangle ABC \sim \triangle PQR$,
Then
$\angle ABC=\angle PQR$
$\angle BCA=\angle QRP$
$\angle ACB=\angle PRQ$

corr. sides, $\sim$ $\triangle$s

corr. sides, $\sim$ $\triangle$s
If
If $\triangle ABC \sim \triangle PQR$,
Then
$\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}$

base $\angle$s, isos. $\triangle$

base $\angle$s, isos. $\triangle$
If
If $AB = BC$,
Then
$\angle ABC = \angle ACB$

sides opp. equal $\angle$s

sides opp. equal $\angle$s
If
If $\angle ABC = \angle ACB$,
Then
$AB = AC$

property of isos. $\triangle$

property of isos. $\triangle$
If
If $\triangle ABC$ is isosceles ($AB = AC$),
Then
$\angle BAD=\angle CAD$
$BD=CD$
$AD \perp BC$

property of equil. $\triangle$

property of equil. $\triangle$
If
If $\triangle ABC$ is equilateral ($AB=BC=AC$),
Then
$\angle ABC = \angle ACB = \angle BAC = 60^{\circ}$

pyth. thm

pyth. thm
If
If $\triangle ABC$ is right-angled (at B),
Then
$AB^{2} + BC^{2} = AC^{2}$

converse of pyth. thm

converse of pyth. thm
If
If $AB^{2} + BC^{2} = AC^{2}$,
Then
$\triangle ABC$ is right-angled and $\angle ABC = 90^{\circ}$

triangle inequality

triangle inequality
$AB+AC>BC$
$AB+BC>AC$
$AC+BC>AB$

Quadrilaterals

15

$\angle$ sum of polygon

$\angle$ sum of polygon
$\text{Sum of interior angles}= (n-2)\times180^{\circ}$
e.g. sum of interior angles of pentagon $(5-2)\times180^{\circ}=540^{\circ}$
$a+b+c+d+e=540^{\circ}$

sum of ext. $\angle$s of polygon

sum of ext. $\angle$s of polygon
$\text{Sum of exterior angles}= 360^{\circ}$
e.g. $a+b+c+d+e=360^{\circ}$

opp. sides of $\parallel$gram

opp. sides of $\parallel$gram
If
If $ABCD$ is a parallelogram,
Then
$AB = DC$
$AD = BC$

opp. $\angle$s of $\parallel$gram

opp. $\angle$s of $\parallel$gram
If
If $ABCD$ is a parallelogram,
Then
$\angle DAB = \angle BCD$
$\angle ADB = \angle ABC$

diags. of $\parallel$gram

diags. of $\parallel$gram
If
If $ABCD$ is a parallelogram,
Then
$OD=OB$
$OA=OC$

diagonals bisect area of $\parallel$gram

diagonals bisect area of $\parallel$gram
If
If $ABCD$ is a parallelogram,
Then
$\text{Area of }\triangle ACD = \text{Area of }\triangle ACB$
$\text{Area of }\triangle ABD = \text{Area of }\triangle CBD$

opp. sides equal

opp. sides equal
If
If $AB = DC$ and $AD = BC$,
Then
$ABCD$ is a parallelogram

opp. $\angle$s equal

opp. $\angle$s equal
If
If $\angle ADC=\angle ABC$ and $\angle DAB=\angle DCB$,
Then
$ABCD$ is a parallelogram

diags. bisect each other

diags. bisect each other
If
If $OA = OC$ and $OD = OB$,
Then
$ABCD$ is a parallelogram

opp. sides equal and $\parallel$

opp. sides equal and $\parallel$
If
If $AB = DC$ and $DC \parallel AB$,
Then
$ABCD$ is a parallelogram

property of square

property of square
If
If $ABCD$ is a square,
Then
$AC=BD$
$AC \perp BD$
$\angle ADC= \angle DCB = \angle CBA = \angle BAD =90^{\circ}$
$AB=BC=CD=DA$
$DB$ bisects $\angle ABC$ and $\angle ADC$
$AC$ bisects $\angle DAB$ and $\angle DCB$
it posses all properties of a parallelogram

property of rectangle

property of rectangle
If
If $ABCD$ is a rectangle,
Then
$AC=BD$
$\angle ADC= \angle DCB = \angle CBA = \angle BAD =90^{\circ}$
it posses all properties of a parallelogram

property of rhombus

property of rhombus
If
If $ABCD$ is a rhombus,
Then
$AB=BC=CD=DA$
$AC \perp BD$
$AC$ bisects $\angle BAD$ and $\angle BCD$
$BD$ bisects $\angle ABC$ and $\angle ADC$
it posses all properties of a parallelogram

property of kite

property of kite
If
If $ABCD$ is a kite,
Then
$AC \perp BD$
$AD=DB$
$DC=BC$
$OD=OB$
$\angle DAO=\angle BAO$
$\angle DCO =\angle BCO$

property of trapezium

property of trapezium
If
If $ABCD$ is a trapezium,
Then
$DC \parallel AB$
$\angle CDA + \angle DAB = 180^{\circ}$
$\angle DCB + \angle CBA = 180^{\circ}$

Circles

Let O be the centre of all the circles below.

21

line from centre $\perp$ chord bisects chord

line from centre $\perp$ chord bisects chord
If
If $ON \perp AB$,
Then
$AN = NB$

line joining centre to mid-pt. of chord $\perp$ chord

line joining centre to mid-pt. of chord $\perp$ chord
If
If $AN = NB$,
Then
$ON \perp AB$ ($\angle ANO$ and $\angle ONB = 90^{\circ}$)

$\perp$ bisector of chord passes through center

$\perp$ bisector of chord passes through center
If
If $AN = NB$ and $CD \perp AB$,
Then
$CD$ passes through the center O

equal chords, equidistant from centre

equal chords, equidistant from centre
If
If $AB = CD$ and $OM \perp AB$ and $ON \perp CD$,
Then
$OM = ON$

chords equidistant from centre are equal

chords equidistant from centre are equal
If
If $OM = ON$ and $OM \perp AB$ and $ON \perp CD$,
Then
$AB = CD$

$\angle$ at center twice $\angle$ at ☉$^{ce}$

$\angle$ at center twice $\angle$ at ☉$^{ce}$
$\angle AOB = 2\,\angle ACB$

$\angle$ in semi-circle

$\angle$ in semi-circle
If
If AB is the diameter of the circle,
Then
$\angle ACB = 90^{\circ}$

$\angle$s in the same segment

$\angle$s in the same segment
$\angle APB = \angle AQB$

arcs proportional to $\angle$s at centre

arcs proportional to $\angle$s at centre
$\overset{\frown}{AB}: \overset{\frown}{BC}= \angle AOB : \angle BOC$

arcs proportional to $\angle$s at circumference

arcs proportional to $\angle$s at circumference
$\overset{\frown}{AB}: \overset{\frown}{BC}= \angle APB : \angle BPC$

equal chords, equal arcs

equal chords, equal arcs
If
If $AB = CD$,
Then
$\overset{\frown}{AB}= \overset{\frown}{CD}$

equal arcs, equal chords

equal arcs, equal chords
If
If $\overset{\frown}{AB}= \overset{\frown}{CD}$,
Then
$AB = CD$

equal arcs, equal $\angle$s

equal arcs, equal $\angle$s
If
If $\overset{\frown}{AB}= \overset{\frown}{CD}$,
Then
$\angle AOB = \angle COD$

equal $\angle$s, equal arcs

equal $\angle$s, equal arcs
If
If $\angle AOB = \angle COD$,
Then
$\overset{\frown}{AB}= \overset{\frown}{CD}$

equal chords, equal $\angle$s

equal chords, equal $\angle$s
If
If $AB = CD$,
Then
$\angle AOB = \angle COD$

equal $\angle$s, equal chords

equal $\angle$s, equal chords
If
If $\angle AOB = \angle COD$,
Then
$AB = CD$

opp. $\angle$s, cyclic quad.

opp. $\angle$s, cyclic quad.
If
If $ABCD$ is a cyclic quadrilateral,
Then
$\angle ABC + \angle ADC = 180^{\circ}$
$\angle BAD + \angle BCD = 180^{\circ}$

ext. $\angle$s, cyclic quad.

ext. $\angle$s, cyclic quad.
If
If $ABCD$ is a cyclic quadrilateral,
Then
$\angle ABC = \angle ADE$

converse of $\angle$s in the same segment

converse of $\angle$s in the same segment
If
If $\angle APB = \angle AQB$,
Then
A,B,Q,P are concyclic

opp. $\angle$s supp.

opp. $\angle$s supp.
If
If $\angle DAB + \angle BCD = 180^{\circ}$,
Then
$ABCD$ are concyclic

ext. $\angle$ = int. opp. $\angle$

ext. $\angle$ = int. opp. $\angle$
If
If $\angle ADC = \angle CBE$,
Then
$ABCD$ are concyclic

Tangents

5

tangent $\perp$ radius

tangent $\perp$ radius
If
If PQ is tangent at T,
Then
$PQ \perp OT$

converse of tangent $\perp$ radius

converse of tangent $\perp$ radius
If
If $OT \perp PQ$,
Then
$PQ$ is tangent at T

tangent properties

tangent properties
If
If TP and TQ are tangents at P and Q from T,
Then
$\angle TOP=\angle TOQ$
$\angle OTP=\angle OTQ$
$TP= TQ$

$\angle$s in alt. segment

$\angle$s in alt. segment
If
If PQ is tangent at A,
Then
$\angle QAC = \angle ABC$

converse of $\angle$s in alt. segment

converse of $\angle$s in alt. segment
If
If $\angle QAC = \angle ABC$,
Then
$PQ$ is tangent at A
HKDSE Geometry Reasons Cheat Sheet | Complete Revision Guide